Telegram Group & Telegram Channel
Почему AlphaDev не перевернул всё вверх дном?

Поговорим о недавно вышедшей от Deepmind статье, в которой обучали нейросеть для поиска более быстрого алгоритма сортировки. Я уже рассказывал про статьи AlphaZero и AlphaTensor, использующих в сущности тот же самый метод (советую изучить)

Особенности данного случая:
1) Пишем программу на ассемблере, генерируя команды по одной. Команды (действия) это элементарные операции сравнения, присваивания и т.д.
2) "Состоянием" в каждый момент является программа, сгенерированная на данный момент, и результат исполнения этой программы.
3) Наградой агента является штраф за длину программы (или время финального исполнения) и за неправильность итогового алгоритма, измеряемую тестами.

Какой результат?

Мы решаем по отдельности задачи создания алгоритма для сортировки массивов фиксированной длины. Начиная с длины 3 и заканчивая 8, выигрыш AlphaDev у человека составил 1, 0, 4, 3, 2, 1 операций. Интуитивно, а также по опыту AlphaTensor, кажется, что при увеличении размера входа нейросеть должна наращивать преимущество по сравнению с человеком, т.к. человеку гораздо сложнее работать с большим количеством объектов.

Почему здесь не так круто? Напишу свои гипотезы, буду рад почитать ваши мысли:

1) Нейросети с их многоразмерными неинтерпретируемыми представлениями не так хорошо дружат с дискретными командами в программировании. Это в принципе усложняет поиск.
2) Нам нужно сгенерировать более длинную последовательность команд, которая должна быть согласована между собой и порождать строгий алгоритм. Это мешает на больших входах.
3) Человек в принципе достаточно силён в программировании по сравнению с матричными перемножениями, поскольку это более близкая к человеческому мышлению вещь. Поэтому на маленьких входах мы уже смогли создать близкий к оптимальному алгоритм.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/69
Create:
Last Update:

Почему AlphaDev не перевернул всё вверх дном?

Поговорим о недавно вышедшей от Deepmind статье, в которой обучали нейросеть для поиска более быстрого алгоритма сортировки. Я уже рассказывал про статьи AlphaZero и AlphaTensor, использующих в сущности тот же самый метод (советую изучить)

Особенности данного случая:
1) Пишем программу на ассемблере, генерируя команды по одной. Команды (действия) это элементарные операции сравнения, присваивания и т.д.
2) "Состоянием" в каждый момент является программа, сгенерированная на данный момент, и результат исполнения этой программы.
3) Наградой агента является штраф за длину программы (или время финального исполнения) и за неправильность итогового алгоритма, измеряемую тестами.

Какой результат?

Мы решаем по отдельности задачи создания алгоритма для сортировки массивов фиксированной длины. Начиная с длины 3 и заканчивая 8, выигрыш AlphaDev у человека составил 1, 0, 4, 3, 2, 1 операций. Интуитивно, а также по опыту AlphaTensor, кажется, что при увеличении размера входа нейросеть должна наращивать преимущество по сравнению с человеком, т.к. человеку гораздо сложнее работать с большим количеством объектов.

Почему здесь не так круто? Напишу свои гипотезы, буду рад почитать ваши мысли:

1) Нейросети с их многоразмерными неинтерпретируемыми представлениями не так хорошо дружат с дискретными командами в программировании. Это в принципе усложняет поиск.
2) Нам нужно сгенерировать более длинную последовательность команд, которая должна быть согласована между собой и порождать строгий алгоритм. Это мешает на больших входах.
3) Человек в принципе достаточно силён в программировании по сравнению с матричными перемножениями, поскольку это более близкая к человеческому мышлению вещь. Поэтому на маленьких входах мы уже смогли создать близкий к оптимальному алгоритм.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/69

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Telegram hopes to raise $1bn with a convertible bond private placement

The super secure UAE-based Telegram messenger service, developed by Russian-born software icon Pavel Durov, is looking to raise $1bn through a bond placement to a limited number of investors from Russia, Europe, Asia and the Middle East, the Kommersant daily reported citing unnamed sources on February 18, 2021.The issue reportedly comprises exchange bonds that could be converted into equity in the messaging service that is currently 100% owned by Durov and his brother Nikolai.Kommersant reports that the price of the conversion would be at a 10% discount to a potential IPO should it happen within five years.The minimum bond placement is said to be set at $50mn, but could be lowered to $10mn. Five-year bonds could carry an annual coupon of 7-8%.

Telegram auto-delete message, expiring invites, and more

elegram is updating its messaging app with options for auto-deleting messages, expiring invite links, and new unlimited groups, the company shared in a blog post. Much like Signal, Telegram received a burst of new users in the confusion over WhatsApp’s privacy policy and now the company is adopting features that were already part of its competitors’ apps, features which offer more security and privacy. Auto-deleting messages were already possible in Telegram’s encrypted Secret Chats, but this new update for iOS and Android adds the option to make messages disappear in any kind of chat. Auto-delete can be enabled inside of chats, and set to delete either 24 hours or seven days after messages are sent. Auto-delete won’t remove every message though; if a message was sent before the feature was turned on, it’ll stick around. Telegram’s competitors have had similar features: WhatsApp introduced a feature in 2020 and Signal has had disappearing messages since at least 2016.

Knowledge Accumulator from tr


Telegram Knowledge Accumulator
FROM USA